
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

XASM: A Cross-Enclave Composition Mechanism
for Exascale System Software

Noah Evans, Kevin Pedretti, Brian Kocoloski, John Lange, Michael Lang, Patrick G. Bridges
nevans@sandia.gov

6/1/16

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ XASM: Cross Enclave Shared Memory
▪ Conceptual modifications needed for Hobbes
▪ Implementation on the Kitten lightweight kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

2

Composition Use Cases in Next-Generation HPC

▪ End-to-end science workflows
▪ Coupled simulation, analysis, and tools
▪ In-situ and in-transit analytics

▪ Multi-physics applications
▪ Application Introspection
▪ Performance analysis, concurrency throttling
▪ Debugging

▪ This presentation concentrates on co-located simulation
and analytics workloads

3

Why Composition is Important

▪ Data movement is
expensive
▪ Writes to filesystem

especially
▪ Need to compartmentalize

complexity
▪ Jamming everything

into one executable is a
pain, fragile

4

Hobbes: Composition and Virtualization
as the Foundations of an Extreme-Scale OS/R

Institution (Lead) Lead PI and Co-PIs Additional Participants
Georgia Tech Karsten Schwan Greg Eisenhauer, Ada Gavrilovska
Indiana U Thomas Sterling Kevin Bohan, Maciej Brodowicz, Luke D'alessandro, Andrew Lumsdaine,

Marcin Zalewski
LANL Michael Lang Noah Evans, Latchesar Ionkov, Patrick McCormick
LBNL Costin Iancu
NC State U Frank Mueller David Fiala
Northwestern U Peter Dinda Kyle Hale, Maciej Swiech
ORNL David E. Bernholdt Christian Engelmann, Hasan Abbasi, Scott Klasky, Arthur B. Maccabe,

Thomas Naughton, Philip C. Roth, Terry Jones, Jeffrey S. Vetter
SNL Ron Brightwell James Laros, Jay Lofstead, Ron Oldfield, Kevin Pedretti
U Arizona David Lowenthal Peter Bailey
UC Berkeley Eric Brewer Kevin Klues, Barrett Rhoden
U New Mexico Patrick G. Bridges Dorian Arnold, Oscar Mondragon, Shuang Yang
U Pittsburgh John Lange

Project web site: http://xstack.sandia.gov/hobbes/

Sponsored by: Dept. of Energy, Office of Advanced
Scientific Computing Research, 2013 Exascale Operating

and Runtime Systems Program

Presenters:
David Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

Kevin Pedretti
Sandia National Laboratories

Programming Models: OS Support for Adaptive Runtimes

• Identify separation of concerns between adaptive runtime and
OS support
–Distinguish between mechanisms and policies
–Resource management: core, memory, network, energy
–Enable user level implementations and policies
–Identify the protection and isolation requirements

• Approach:
–Top-down – examine runtime APIs, determine lacking OS support
–Bottom-up – propose novel OS APIs, examine runtime implementation
–Mantra: check first if it can be done at the user level

• Yardstick for success – application performance and ease of
development
–Performance metrics – time, energy
–Software engineering metrics – “composability”, “tunability”

Energy and Power

• Develop APIs to enable
energy and power research

• Power/resilience modeling
• Adaptive virtualization

–Can virtualization enable
power/resilience trade-offs for
unmodified applications?

• Application-centric power
management
–What power “knobs” are worth

exposing to applications?
Many stakeholders may

influence power management
in future HPC systems (HPCS)

Scheduling

• Interfaces, policies, mechanisms to coordinate
across enclaves
–Scheduling/co-scheduling of composite applications across

multiple enclaves
–Reduce power consumption, data movement

• Lower-level (i.e. NVL) mechanisms to enable
scheduling R&D at higher levels

• Mathematical scheduling
–Using constrained optimization techniques (i.e. convex

quadratic programming)
–Explore ways to facilitate compute-intensive solutions

Resilience

• Resilience building blocks
–Membership management protocols with different consistency
–Persistent state management (resilient distr. key/value stores)
–Reliable/unreliable publish/subscribe event notification APIs

• OS/R hardening
–Identifying most vulnerable and most important data structures
–Protecting them against silent data corruption

• Fault injection capabilities
–Support fault sensitivity and coverage analysis
–Support controlled experiments in fault detection, propagation,

handling in OS/R and higher software layers
• Tunable resilience and cross-layer/-enclave

coordination
–Cost model of different cross-layer/-enclave resilience choices
–Inter-enclave workflow coordination that annotates data
–Interfaces for autonomic management

Global Information Bus (GIB)

• Goal: to provide a scalable data transfer service to
Hobbes OS/R components running throughout system
–Broadcast and multicast
–Data aggregation
–Point-to-point

• Approach: a hierarchy of GIB components rooted at a

service node
–Hierarchy enables parallelism in data transfers
–Fan-out limits keeps any node from becoming a bottleneck
–User-defined and built-in aggregation operators support control

of data volume
–Possibly based on MRNet scalable tool infrastructure

Service node

GIB

GIB

GIB

GIB

GIB

GIB

GIB

= System node

= GIB

= Hobbes components
 (e.g., Enclave Layer,
 Node Virtualization
 Layer)

Binary tree organization shown
for illustrative purposes only; real
GIB organization will use larger
(and perhaps variable) fan-out at
each GIB node.

= GIB communication
 channel

…

…

…

…

…

…

…

…

Application Composition as a Driving Force

• More complex workflows are driving need for advanced OS services
and capability
–Extreme-scale applications will continue to evolve beyond a space-shared batch

scheduled approach
• HPC application developers are employing ad hoc solutions

–Interfaces and tools like mmap, ptrace, Python for coupling codes and sharing data
• Tools stress OS functionality because of these legacy APIs and services
• More attention needed on how multiple applications are composed
• Example use cases

–Ensemble calculations for uncertainty quantification
–Multi-{material, physics, scale} simulations
–In-situ analysis
–Graph analytics
–Performance and correctness tools

• Requirements are driven by applications
–Not necessarily by parallel programming model
–Somewhat insulated from hardware advancements

Exploratory Analytics Scenarios

Application Visualization File System Display

Bad: Insufficient bandwidth

Application Visualization File System Display

Bad: Inefficient use of compute infrastructure

Application/Visualization File System Display

Good! But Application and Visualization have different OS/R requirements

Composition + Virtualization
Solution for Exploratory Analytics

• Provide an environment that
allows
–Each application component to

run on the OS/R it prefers
–Offers abstractions for

interactions between
components with high
performance

–Supports mapping components
to resources for best
performance

• Filter (enclave 2) co-located
with simulation app
–Reduce network communication

to viz enclave

A Multi-Physics Example
• Consortium for Advanced Simulation of Light Water

Reactors (CASL)
–Virtual Environment for Reactor Analysis (VERA)

• Thermal hydraulics, neutron transport, materials models, crack
propagation, multiphase boiling, …

Node Virtualization Layer (NVL)

• Goal: Support multiple OS/R stacks running
simultaneously on a single physical node, enable
them to share resources efficiently
–No one-size fits all OS/R solution
–Minimize data movement by co-locating cooperating OS/R

stacks (e.g., simulation and analysis OS/R stacks)

• Supported Usage Models:

App

NVL

App

Guest OS/R

Virtual Node Native Virtual Machine

App App

NVL

OS/R OS/R App

NVL

App runs directly on
NVL, lightweight OS

App runs on guest
OS/R stack

Apps run on best OS/R
stack for app, cooperate

Starting Points for Hobbes NVL

Kitten Lightweight Kernel
• Base OS functionality
• Provides lightweight native

environment for scalable HPC
apps
https://software.sandia.gov/trac/kitten

Palacios Virtual Machine Monitor
• Hypervisor functionality
• Provides scalable guest OS/R

environment for apps that need full OS
functionality

http://v3vee.org/palacios/

Refactor into NVL,
Hobbes OS/R composition requirements drive new

OS mechanisms and interfaces

Virtualization R&D Areas

• High performance virtualization
–HAL / NVL architecture
–Interfaces for virtual node composition
–High-performance network virtualization
–Quality of Service

• High-Risk / High-Impact
–NVL-level autonomic adaption for specified power, energy,

and/or performance goals
–Hybrid virtual machines for parallel language OS/R stacks,

provide custom virtual cores specialized for language
implementation

–Para-native approach, run multiple native OS instances
simultaneously without relying on hardware virtualization

1

Enclave OS/R Layer

• An enclave is a partition of the system
allocated to a single application (component) or
service
–Primarily a container and unit of organization
–Provides a single OS/R environment to the application

• Functionality (APIs) associated with enclaves
–Membership management

• Resources managed by SGOS Scheduling and Resource
Management subsystem

–Basic job-level collectives
• E.g., application launch, termination, pause, resume, …

–Autonomic monitor-analyze-plan-execute capabilities
–Composition of enclaves to assemble applications

• Provide each application component (enclave) the OS/R it needs
• Provide low-level mechanisms to connect the components (and

OS/Rs)

A Deeper Look at Composition

Intra-Node Composition
• Components co-located on same

set of nodes
• Virtualization used to isolate NOS

environments on each node
• Composition (coupling) takes

place via shared memory

Inter-Node Composition
• Components deployed to

separate sets of nodes
• Composition (coupling) takes

place via network

Composition Research Approach

• Key: selective and limited breaking of isolation between
NOS instances

• Need to develop appropriate abstraction for low-level
communication between different runtimes and OSes
–Analogous to Portals

• And high-performance implementations

A couple of ideas…
• Virtual network interfaces (vNICs) for network-based sharing

–Zero-copy between cooperating co-located VM instances
–Could map to traditional network interface in legacy OS stacks

• Shared memory based interface for local sharing
–SMARTMAP-like approach between cooperating co-located VM

instances
–Could map to traditional shared memory in legacy OS stacks

Areas of interest
• Core Management/Task Scheduling

–Cooperative Scheduling
–Group Scheduling for temporal locality
–Composing parallel library calls
–Support for DAG based scheduling

• Network Management
–Global bw/latency provisioning
–Integration of core scheduling with network

signaling
• Support for Graph Analytics

–Combination of innovative OS/R features: global
address space, one-sided communication and
notification, lightweight threads

Challenges for Extreme-Scale
Operating Systems

• Massive parallelism (exponential growth)
–Dynamic parallelism and decomposition
–Advanced run-time systems to manage tasks, dependencies, and

messaging, linked with scheduler
–(with dynamic RTS, power and fault mgmt: “OS noise” not an issue)

• Power as a managed system resource
–Adjusting arithmetic precision, fault probability, directing power within

global view at multiple levels
• Fault tolerance actively managed in software at many levels

–Fault management within nodes and at global view
• Architecture organization (significant OS/R changes)

–Heterogeneous cores, variable precision, specialized functional units
–Compute “everywhere”: CPU, accelerator, memory, network, storage
–Deep memory hierarchies: 3D RAM, NVRAM on node

• New models for deep memory hierarchy
• Multi-level parallelism within the node to hide latency

• Applications growing in complexity

Hobbes Project Goals

• Deliver prototype OS/R environment to enable R&D in
extreme-scale scientific computing
–Focus on mechanisms
–Policies will follow

• Focus on application composition as a fundamental driver
–Develop necessary OS/R interfaces and system services required to

support resource isolation and sharing
–Support complex simulation and analysis workflows

• Provide a lightweight OS/R environment with flexibility to
build custom runtimes
–Compose applications from a collection of enclaves

• Leverage Kitten lightweight kernel and Palacios
lightweight virtual machine monitor to enable high-risk
high-impact research in virtualization, energy/power,
scheduling, and resilience Extreme-scale OS/R components

(Hobbes targets in bold)

Core OS/R components
–Enclave OS/R

• Composition and mapping
• Membership and collective

operations
–Node Virtualization Layer

• High-performance virtualization
• OS mechanisms for composition

–Global Information Bus
• Scalable communication

between components

Cross-cutting areas
–Energy and power

• APIs to enable E/P research
–Resilience

• OS/R resilience building blocks
• OS/R hardening
• Fault injection support

–Scheduling
• Mathematical scheduling

–Programming models
• Separation of concerns between

adaptive runtimes and OS

Hobbes Project Goals

Example: SNAP and Spectrum Analysis

▪ SNAP
▪ Neutronics proxy,

based on PARTISN
▪ Simulates reactor

using sweep3d
▪ Spectrum analysis
▪ After each

timestep
▪ Two separate

processes
communicating

5

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ XASM: Cross Enclave Shared Memory
▪ Conceptual modifications needed for Hobbes
▪ Implementation for Linux and Kitten lightweight

kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

6

Hobbes Project: Systems Software Support
for Composition

▪ Application level composition difficult for application writer
▪ Lots of research on how to support (Adios ’10, Gold-rush ’13)

7

• Goals
• Minimize Data movement in

composition
• Optimizing the scheduling of

composed workloads

Hobbes: Composition and Virtualization
as the Foundations of an Extreme-Scale OS/R

Institution (Lead) Lead PI and Co-PIs Additional Participants
Georgia Tech Karsten Schwan Greg Eisenhauer, Ada Gavrilovska
Indiana U Thomas Sterling Kevin Bohan, Maciej Brodowicz, Luke D'alessandro, Andrew Lumsdaine,

Marcin Zalewski
LANL Michael Lang Noah Evans, Latchesar Ionkov, Patrick McCormick
LBNL Costin Iancu
NC State U Frank Mueller David Fiala
Northwestern U Peter Dinda Kyle Hale, Maciej Swiech
ORNL David E. Bernholdt Christian Engelmann, Hasan Abbasi, Scott Klasky, Arthur B. Maccabe,

Thomas Naughton, Philip C. Roth, Terry Jones, Jeffrey S. Vetter
SNL Ron Brightwell James Laros, Jay Lofstead, Ron Oldfield, Kevin Pedretti
U Arizona David Lowenthal Peter Bailey
UC Berkeley Eric Brewer Kevin Klues, Barrett Rhoden
U New Mexico Patrick G. Bridges Dorian Arnold, Oscar Mondragon, Shuang Yang
U Pittsburgh John Lange

Project web site: http://xstack.sandia.gov/hobbes/

Sponsored by: Dept. of Energy, Office of Advanced
Scientific Computing Research, 2013 Exascale Operating

and Runtime Systems Program

Presenters:
David Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

Kevin Pedretti
Sandia National Laboratories

Programming Models: OS Support for Adaptive Runtimes

• Identify separation of concerns between adaptive runtime and
OS support
–Distinguish between mechanisms and policies
–Resource management: core, memory, network, energy
–Enable user level implementations and policies
–Identify the protection and isolation requirements

• Approach:
–Top-down – examine runtime APIs, determine lacking OS support
–Bottom-up – propose novel OS APIs, examine runtime implementation
–Mantra: check first if it can be done at the user level

• Yardstick for success – application performance and ease of
development
–Performance metrics – time, energy
–Software engineering metrics – “composability”, “tunability”

Energy and Power

• Develop APIs to enable
energy and power research

• Power/resilience modeling
• Adaptive virtualization

–Can virtualization enable
power/resilience trade-offs for
unmodified applications?

• Application-centric power
management
–What power “knobs” are worth

exposing to applications?
Many stakeholders may

influence power management
in future HPC systems (HPCS)

Scheduling

• Interfaces, policies, mechanisms to coordinate
across enclaves
–Scheduling/co-scheduling of composite applications across

multiple enclaves
–Reduce power consumption, data movement

• Lower-level (i.e. NVL) mechanisms to enable
scheduling R&D at higher levels

• Mathematical scheduling
–Using constrained optimization techniques (i.e. convex

quadratic programming)
–Explore ways to facilitate compute-intensive solutions

Resilience

• Resilience building blocks
–Membership management protocols with different consistency
–Persistent state management (resilient distr. key/value stores)
–Reliable/unreliable publish/subscribe event notification APIs

• OS/R hardening
–Identifying most vulnerable and most important data structures
–Protecting them against silent data corruption

• Fault injection capabilities
–Support fault sensitivity and coverage analysis
–Support controlled experiments in fault detection, propagation,

handling in OS/R and higher software layers
• Tunable resilience and cross-layer/-enclave

coordination
–Cost model of different cross-layer/-enclave resilience choices
–Inter-enclave workflow coordination that annotates data
–Interfaces for autonomic management

Global Information Bus (GIB)

• Goal: to provide a scalable data transfer service to
Hobbes OS/R components running throughout system
–Broadcast and multicast
–Data aggregation
–Point-to-point

• Approach: a hierarchy of GIB components rooted at a

service node
–Hierarchy enables parallelism in data transfers
–Fan-out limits keeps any node from becoming a bottleneck
–User-defined and built-in aggregation operators support control

of data volume
–Possibly based on MRNet scalable tool infrastructure

Service node

GIB

GIB

GIB

GIB

GIB

GIB

GIB

= System node

= GIB

= Hobbes components
 (e.g., Enclave Layer,
 Node Virtualization
 Layer)

Binary tree organization shown
for illustrative purposes only; real
GIB organization will use larger
(and perhaps variable) fan-out at
each GIB node.

= GIB communication
 channel

…

…

…

…

…

…

…

…

Application Composition as a Driving Force

• More complex workflows are driving need for advanced OS services
and capability
–Extreme-scale applications will continue to evolve beyond a space-shared batch

scheduled approach
• HPC application developers are employing ad hoc solutions

–Interfaces and tools like mmap, ptrace, Python for coupling codes and sharing data
• Tools stress OS functionality because of these legacy APIs and services
• More attention needed on how multiple applications are composed
• Example use cases

–Ensemble calculations for uncertainty quantification
–Multi-{material, physics, scale} simulations
–In-situ analysis
–Graph analytics
–Performance and correctness tools

• Requirements are driven by applications
–Not necessarily by parallel programming model
–Somewhat insulated from hardware advancements

Exploratory Analytics Scenarios

Application Visualization File System Display

Bad: Insufficient bandwidth

Application Visualization File System Display

Bad: Inefficient use of compute infrastructure

Application/Visualization File System Display

Good! But Application and Visualization have different OS/R requirements

Composition + Virtualization
Solution for Exploratory Analytics

• Provide an environment that
allows
–Each application component to

run on the OS/R it prefers
–Offers abstractions for

interactions between
components with high
performance

–Supports mapping components
to resources for best
performance

• Filter (enclave 2) co-located
with simulation app
–Reduce network communication

to viz enclave

A Multi-Physics Example
• Consortium for Advanced Simulation of Light Water

Reactors (CASL)
–Virtual Environment for Reactor Analysis (VERA)

• Thermal hydraulics, neutron transport, materials models, crack
propagation, multiphase boiling, …

Node Virtualization Layer (NVL)

• Goal: Support multiple OS/R stacks running
simultaneously on a single physical node, enable
them to share resources efficiently
–No one-size fits all OS/R solution
–Minimize data movement by co-locating cooperating OS/R

stacks (e.g., simulation and analysis OS/R stacks)

• Supported Usage Models:

App

NVL

App

Guest OS/R

Virtual Node Native Virtual Machine

App App

NVL

OS/R OS/R App

NVL

App runs directly on
NVL, lightweight OS

App runs on guest
OS/R stack

Apps run on best OS/R
stack for app, cooperate

Starting Points for Hobbes NVL

Kitten Lightweight Kernel
• Base OS functionality
• Provides lightweight native

environment for scalable HPC
apps
https://software.sandia.gov/trac/kitten

Palacios Virtual Machine Monitor
• Hypervisor functionality
• Provides scalable guest OS/R

environment for apps that need full OS
functionality

http://v3vee.org/palacios/

Refactor into NVL,
Hobbes OS/R composition requirements drive new

OS mechanisms and interfaces

Virtualization R&D Areas

• High performance virtualization
–HAL / NVL architecture
–Interfaces for virtual node composition
–High-performance network virtualization
–Quality of Service

• High-Risk / High-Impact
–NVL-level autonomic adaption for specified power, energy,

and/or performance goals
–Hybrid virtual machines for parallel language OS/R stacks,

provide custom virtual cores specialized for language
implementation

–Para-native approach, run multiple native OS instances
simultaneously without relying on hardware virtualization

1

Enclave OS/R Layer

• An enclave is a partition of the system
allocated to a single application (component) or
service
–Primarily a container and unit of organization
–Provides a single OS/R environment to the application

• Functionality (APIs) associated with enclaves
–Membership management

• Resources managed by SGOS Scheduling and Resource
Management subsystem

–Basic job-level collectives
• E.g., application launch, termination, pause, resume, …

–Autonomic monitor-analyze-plan-execute capabilities
–Composition of enclaves to assemble applications

• Provide each application component (enclave) the OS/R it needs
• Provide low-level mechanisms to connect the components (and

OS/Rs)

A Deeper Look at Composition

Intra-Node Composition
• Components co-located on same

set of nodes
• Virtualization used to isolate NOS

environments on each node
• Composition (coupling) takes

place via shared memory

Inter-Node Composition
• Components deployed to

separate sets of nodes
• Composition (coupling) takes

place via network

Composition Research Approach

• Key: selective and limited breaking of isolation between
NOS instances

• Need to develop appropriate abstraction for low-level
communication between different runtimes and OSes
–Analogous to Portals

• And high-performance implementations

A couple of ideas…
• Virtual network interfaces (vNICs) for network-based sharing

–Zero-copy between cooperating co-located VM instances
–Could map to traditional network interface in legacy OS stacks

• Shared memory based interface for local sharing
–SMARTMAP-like approach between cooperating co-located VM

instances
–Could map to traditional shared memory in legacy OS stacks

Areas of interest
• Core Management/Task Scheduling

–Cooperative Scheduling
–Group Scheduling for temporal locality
–Composing parallel library calls
–Support for DAG based scheduling

• Network Management
–Global bw/latency provisioning
–Integration of core scheduling with network

signaling
• Support for Graph Analytics

–Combination of innovative OS/R features: global
address space, one-sided communication and
notification, lightweight threads

Challenges for Extreme-Scale
Operating Systems

• Massive parallelism (exponential growth)
–Dynamic parallelism and decomposition
–Advanced run-time systems to manage tasks, dependencies, and

messaging, linked with scheduler
–(with dynamic RTS, power and fault mgmt: “OS noise” not an issue)

• Power as a managed system resource
–Adjusting arithmetic precision, fault probability, directing power within

global view at multiple levels
• Fault tolerance actively managed in software at many levels

–Fault management within nodes and at global view
• Architecture organization (significant OS/R changes)

–Heterogeneous cores, variable precision, specialized functional units
–Compute “everywhere”: CPU, accelerator, memory, network, storage
–Deep memory hierarchies: 3D RAM, NVRAM on node

• New models for deep memory hierarchy
• Multi-level parallelism within the node to hide latency

• Applications growing in complexity

Hobbes Project Goals

• Deliver prototype OS/R environment to enable R&D in
extreme-scale scientific computing
–Focus on mechanisms
–Policies will follow

• Focus on application composition as a fundamental driver
–Develop necessary OS/R interfaces and system services required to

support resource isolation and sharing
–Support complex simulation and analysis workflows

• Provide a lightweight OS/R environment with flexibility to
build custom runtimes
–Compose applications from a collection of enclaves

• Leverage Kitten lightweight kernel and Palacios
lightweight virtual machine monitor to enable high-risk
high-impact research in virtualization, energy/power,
scheduling, and resilience Extreme-scale OS/R components

(Hobbes targets in bold)

Core OS/R components
–Enclave OS/R

• Composition and mapping
• Membership and collective

operations
–Node Virtualization Layer

• High-performance virtualization
• OS mechanisms for composition

–Global Information Bus
• Scalable communication

between components

Cross-cutting areas
–Energy and power

• APIs to enable E/P research
–Resilience

• OS/R resilience building blocks
• OS/R hardening
• Fault injection support

–Scheduling
• Mathematical scheduling

–Programming models
• Separation of concerns between

adaptive runtimes and OS

Hobbes Project Goals

Hobbes Project: Why Systems Software Should
Support Composition

8

Linux

Producer Consumer

Kitten

physical
memory
pool

Cow
Region

Pinned
SnapshotXemem

Hobbes Project: Why Systems Software Should
Support Composition

9

Linux

Producer Consumer

Kitten

physical
memory
pool

Cow
Region

Pinned
SnapshotXemem

• Space sharing and time sharing
virtualization using “Enclaves”

Hobbes Project: Why Systems Software Should
Support Composition

10

Linux

Producer Consumer

Kitten

physical
memory
pool

Cow
Region

Pinned
SnapshotXemem

• Space sharing and time sharing
virtualization using “Enclaves”

• Communicate using
optimized transports

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ XASM: Cross Enclave Shared Memory
▪ Conceptual modifications needed for Hobbes
▪ Implementation on the Kitten lightweight kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

11

XASM: Optimizing Data Movement for
Composition

▪ Transparent: No changes to APIs
▪ Consistent: Neither side, producer or consumer, sees

changes made by the other
▪ Asynchronous: No locking needed

12

Fig. 4: TCASM Architecture

published. Since the data was originally mapped as private,
any modifications trigger COW, resulting in new anonymous
pages in the producer’s address space. This leaves the file-
backed pages unchanged until the producer calls msync.

Every time an observer maps this producer’s memory-
mapped file into its own memory via mmap, it is given a
pointer to the most recent commit published by the producer.
If the producer calls msync, the previously file-backed pages
in the observer’s address space are converted to anonymous.
In this way, changes to the file will not be reflected in
the observer’s working set until after the observer has re-
mapped the shared memory-mapped file using via mmap again.
Figure 4 depicts the interaction between producer and observer
and the shared memory region. Initially, the producer and
observer’s virtual memory pages point to an unmodified shared
memory file. On the far right of the diagram, the producer is
modifying a page, so a new page is allocated and mapped
in the producer’s virtual memory as per the standard COW
procedure. On the left, the producer has published its changes,
so the original pages must be preserved in the observer’s
address space. Pages are copied out of the shared region and
the observers virtual address space is updated to reflect this
new state. This allows observers to advance at different rates
than the producer and one another since they always keep their
own versions of the data.

With this method, the producer task incurs a COW overhead
for each page that it modifies. However, we argue that the
overhead of COW will be overshadowed by the lack of
explicit synchronization required to manually copy the data. In
addition, an expensive copy operation can be prevented if the
producer does not modify all pages in the shared region, giving
an advantage to the COW mechanism over unconditionally
copying the entire shared range of pages in a multi-buffer
solution. Furthermore, this implementation provides significant
decoupling between producers and observers. The only shared
structure is the data itself and the producer makes its progress
continuously without coordinating with observers which are
created or destroyed independently. New types of observers
(checkpointing or visualization) could be written to work
off the same application without any modifications to the
producer. This decoupling among the producer and observers
is difficult to achieve with shared buffer solutions where
observers would have to share the same memory space as the
producer.

C. TCASM Application Interface

Using TCASM requires some simple application modifica-
tions. The data required by any observers needs to be placed
in shared regions. The code needs to be modified to publish
the new versions at points where data is consistent, by calling
msync. Simple application code would look as follows:

application (producer)

mmap (filename,data)

Enter Timing loop {

Do work ()

call msync() # to publish data version

}

co application (observer)

Enter Processing loop {

mmap (filename,data) # to get new data

Do work ()

call unmap()

}

The mapped filenames themselves are generated to align
with MPI ranks such that the observers can deduce the names
from information they already have.

The application using TCASM to share its data also needs
to provide some metadata to hold application-specific descrip-
tions of the structures to be shared. Information such as the
number of regions and their respective sizes, the variables and
their types, data versions, and important iterators from the
application, may be required in order to allow the observers
to interpret the data. For example, a checkpoint co-application
would need all of the information that is required to restart
the application from a checkpoint such as the input deck and
iterator values. For an analytics observer the extents and offsets
of the data structures of interest for the calculation would need
to be included. Any constants can be included here as well.
Using a defined data description standard such as HDF5 or
netCDF could be used to describe the data, we currently do
not enforce a description type, though this could easily be
supported and may provide some benefit.

The initiating application has to provide this data set for the
observing applications. The application also needs to allocate
the data structures for publishing using mmap. We developed
a C based FORTRAN library, and a custom allocator for C++
for this reason.

There are several FORTRAN wrapper functions, to facilitate
the system calls and pointer arithmetic necessary to instantiate

Trick: Copy On Write

▪ Allows “lazy” copying of data -
can avoid the copy in some
situations

▪ OS notified when process trying to
modify shared page

13

• No modification = no copy

• Modification incurs the extra cost of a
page fault

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ XASM: Cross Enclave Shared Memory
▪ Conceptual modifications needed for Hobbes
▪ Implementation on the Kitten lightweight kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

14

Kitten Implementation

▪ Implementations heavily dependent on virtual memory
systems

▪ How are the virtual to physical mappings are maintained
will affect contention and allocation policy

▪ Need to optimize contention and allocation tradeoffs for
performance

15

Kitten Virtual Memory

▪ In Kitten, user allocates physical memory explicitly
▪ User chooses own virtual to physical mappings

▪ Kitten flat-mapped, no page faults!
▪ Additions to Kitten needed for XASM:
▪ Add a page fault handler to Kitten
▪ Add a mechanism to make physical memory pools

available to individual processes

16

Kitten XASM

Producer Consumer

Kitten

// PRODUCER
arena_map_backed_region_anywhere(my_aspace, ®ion,
…);
for(i=0; i < datalen; i++)
 simulate(data[i]);
aspace_copy(id, &dst, 0);

Kitten XASM

Producer Consumer

Kitten

region

// PRODUCER
arena_map_backed_region_anywhere(my_aspace, ®ion,
…);
for(i=0; i < datalen; i++)
 simulate(data[i]);
aspace_copy(id, &dst, 0);

pool

Kitten XASM// PRODUCER
arena_map_backed_region_anywhere(my_aspace, ®ion,
…);
for(i=0; i < datalen; i++)
 simulate(data[i]);
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region

Kitten XASM// PRODUCER
arena_map_backed_region_anywhere(my_aspace, ®ion,
…);
for(i=0; i < datalen; i++)
 simulate(data[i]);
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region region

Kitten XASM// PRODUCER
arena_map_backed_region_anywhere(my_aspace, ®ion,
…);
for(i=0; i < datalen; i++)
 simulate(data[i]);
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region region

Kitten XASM

Producer Consumer

Kitten

// CONSUMER
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN,
SMARTMAP_ALIGN);
for(i=0; i < datalen; i++)
 analyze(data[i]);
aspace_unsmartmap(xasm_id, my_id, …);
aspace_destroy(xasm_id);

Kitten

pool
region region

Kitten XASM

Producer Consumer

Kitten

// CONSUMER
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN,
SMARTMAP_ALIGN);
for(i=0; i < datalen; i++)
 analyze(data[i]);
aspace_unsmartmap(xasm_id, my_id, …);
aspace_destroy(xasm_id);

KittenKitten

region
pool

region

Kitten XASM

Producer Consumer

// CONSUMER
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN,
SMARTMAP_ALIGN);
for(i=0; i < datalen; i++)
 analyze(data[i]);
aspace_unsmartmap(xasm_id, my_id, …);
aspace_destroy(xasm_id);

KittenKittenKitten

region
pool

region

Kitten XASM

Producer Consumer

// CONSUMER
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN,
SMARTMAP_ALIGN);
for(i=0; i < datalen; i++)
 analyze(data[i]);
aspace_unsmartmap(xasm_id, my_id, …);
aspace_destroy(xasm_id);

KittenKittenKitten

pool
region

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ Xasm: Transparently Consistent Asynchronous Shared

Memory
▪ Conceptual modifications need for Hobbes
▪ Implementation for Linux and Kitten lightweight

kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

26

Performance Evaluation

▪ Need to show that it works with minimal performance
overhead

▪ Questions to answer:
▪ What is the overhead of page fault handling?
▪ How does the overhead of Xasm compare to base

case and synchronized shared memory?

27

Experimental Design

▪ Sandy bridge 2.2 GHz,12 core, 2 socket system, 24 GB
(Hyper-threading off)

▪ Hobbes environment on Linux
▪ Use cycle counter for kernel measurements of page

faults
▪ SNAP + Spectrum Analysis as macro benchmark
▪ Compare worst case (xpmem+spin locks), Xasm, best

case (no analytics)
▪ Inter-enclave on Kitten (6 trials per size)
▪ x*y*z = 96, 200, 324, 490, 768, 6144

28

0.00

0.25

0.50

0.75

1.00

3000 6000 9000 12000
Cycles

D
en

si
ty

Operating System
Kitten
Linux

Distribution of Cycles In Page Fault Handler
Kitten faults less noisy

29

Linux slower 25% of time

30

0.00

0.25

0.50

0.75

1.00

5000 10000 15000
Cycles

Pe
rc

en
ta

ge
 F

au
lts

 C
om

pl
et

ed

Operating System
Kitten
Linux

CDF of Cycles In Page Fault Handler

XASM Overhead Negligible Between Processes

31

0.000

0.005

0.010

100 1000
Problem Size (Bytes)

Ti
m

e
In

 S
itu

 (S
ec

on
ds

) Composed Applications
SNAP no analytics
SNAP w/ Analytics Linux via TCASM
SNAP w/ Analytics Linux via XPMEM

Time Spent In Situ

<4% In Worst Case

32

● ● ● ● ● ●
●

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●
● ●

●

● ● ●● ● ● ● ● ●

●

●

●

●

● ●● ● ● ● ● ●● ● ● ●

●

●

●

● ● ● ● ●● ● ● ● ● ●

●

● ●

●

●
●

●

●

●

● ● ●

●

●

●
● ●

●

●

●

●

● ● ●●

●

●

●
●

●●

●

● ● ● ●

●

●

●

●
●

●

●

● ●

●

● ●●

●

● ●
●

●

●

●

● ●

● ●●

●

● ● ● ●

●

●

●

●

●

●●

●

● ● ● ●

●

●

●

●

● ●● ● ●
● ●

●● ● ● ●
●

●●

●

●

●
●

●● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●●

●
●

● ● ●

●

● ● ● ● ●● ●

●

●

● ●●

●

●

●

●
●

●

●

●

● ● ●

●

●

● ●

● ●

●

● ● ● ● ●● ●

●

● ● ●●

●

● ● ● ●

●

●

●

● ● ●● ●

●

●

●

●

●

● ●
●

● ●●

●

●

●

● ●●
●

● ● ● ●● ●

● ●

●
●● ●

●

●

●
●

●

●
●

● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●● ●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ● ● ●

●

●
●

●
●

●

●

●

●

●● ● ●

●
●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

● ●
● ● ● ● ●● ●

●
● ●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ●

●

●

●

●
●

● ●

●

● ●● ● ● ●
●

● ● ● ● ●●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

● ● ●

●

● ●
● ●● ● ●

●

●

●

● ● ● ●●

●

● ● ●●

●

●

● ●

●

● ● ●
●

●

●

● ● ●●

●

●

● ●●

●

● ● ●● ●
●

●

●● ●
●

● ●

●

●

●

●

●● ●

●

● ●

●

● ●
●

●● ●
●

●

●

●

●

●

●
●0.00

0.01

0.02

0.03

100 1000 10000
Problem Size (Bytes)

Pe
rc

en
ta

ge
 o

f T
im

e
In

 S
itu Composed Applications

●

●

●

SNAP no analytics
SNAP w/ Analytics Linux via TCASM
SNAP w/ Analytics Linux via XPMEM

Percentage of Time In Situ

Address Space Copies Expensive but Still
Manageable

33

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

1

2

3

100 1000
Problem Size (x*y*z)

Ti
m

e
In

 S
itu

 (S
ec

on
ds

)
Composed Applications

● SNAP Kitten w/ Analytics Linux via XASM

Time Spent In Situ (Seconds)

Still Less Than 3% of Execution Time with
Scale

34

●

● ●
●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

0.00

0.03

0.06

0.09

0.12

100 1000
Problem Size (x*y*z)

Pe
rc

en
ta

ge
 o

f T
im

e
In

 S
itu

Composed Applications
● SNAP Kitten w/ Analytics Linux via XASM

Percentage of Time Spent In Situ

Outline

▪ Application composition and why it matters
▪ Hobbes: System software support for application

composition
▪ XASM: Transparently Consistent Asynchronous Shared

Memory
▪ Conceptual modifications need for Hobbes
▪ Implementation for Linux and Kitten lightweight

kernel
▪ Performance evaluation

▪ Future work
▪ Conclusions

35

Future work

▪ We know what systems software can do in this case but
we don’t know what it should do
▪ For a Copy on Write mechanism what does fault

tolerance and flow control look like?
▪ Copy on Write not necessarily good for some HPC

applications
▪ Anything that touches every page
▪ Wait free queue instead?

▪ Integrate XASM with in-situ runtimes like ADIOS

36

Conclusions

▪ Systems software can simplify composition
▪ XASM is one potential mechanism
▪ XASM is working in the Hobbes OS/R stack
▪ Performance is reasonable and using XASM is easy
▪ Potential piece of exascale infrastructure

37

Thank You

38

